UF College of Medicine UNIVERSITY of FLORIDA

The Promise of Digital Twin Technology for P4 Medicine

Business Tampere and Tampere University

April 16, 2025

Reinhard C. Laubenbacher, Ph.D. Department of Medicine University of Florida reinhard.laubenbacher@medicine.ufl.edu

Insulin Pump Therapy

Like a healthy pancreas, insulin pumps deliver one type of insulin. Using your personal pump settings, insulin is delivered continuously (basal) and in larger doses for meals (bolus).

Insulin flows through thin, flexible tubing (variety of lengths available).

INFUSION SET The tubing leads to an adhesive

patch and fine tube under the skin.

BENEFITS OF PUMPING

Bringing together human ingenuity and advanced technology to help combat heart disease, the #1 cause of death.

HeartFlow's non-invasive personalized cardiac test provides unprecedented visualization of each patient's coronary arteries, enabling physicians to create more effective treatment plans for their patients.

Digital Twins

National Academies of Sciences, Engineering, and Medicine. 2023. *Foundational Research Gaps and Future Directions for Digital Twins*. <u>https://doi.org/10.17226/26894</u>

Precision Care

P4 Medicine and Digital Twins

Oscar Silfvergren, Christian Simonsson, Mattias Ekstedt, Peter Lundberg, Peter Gennemark, and Gunnar Cedersund. Digital twin predicting diet response before and after long-term fasting. PLOS Computational Biology, 18(9):e1010469, 2022.

- Explainability
- Intervenability
- Learnability
- Diversability

nature computational science

npi | systems biology and applications

Published in partnership with the Systems Biology Institute

Perspective

Digital twins in medicine

REVIEW ARTICLE

A perfectly imperfect engine: Utilizing the digital twin https:// paradigm in pulmonary hypertension

Melody Walker¹ | Helen Moore¹ | Ali Ataya¹ | Ann Pham¹ | Paul A. Corris² | Reinhard Laubenbacher¹ | Andrew J. Brvant¹

Received: 9 October 2023

R. Laubenbacher **1**¹, B. Mehrad **1**¹, I. Shmulevich² & N. Trayanova³

A modular computational framework for medical digital twins

J. Masison^a, J. Beezley^b, Y. Mei^c, HAL Ribeiro^d, A. C. Knapp^d, L. Sordo Vieira^d, B. Adhikari^a, Y. Scindia^d, M. Grauer^b, B. Helba^b, W. Schroeder^b, B. Mehrad^d, and R. Laubenbacher^{d,1}

^aCenter for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06032; ^bKitware Inc., Clifton Park, NY 12065; ^cDepartment of Computer Science, University of Michigan, Ann Arbor, MI 48109; and ^dDepartment of Medicine, University of Florida, Gainesville, FL 32611

Check for updates

www.nature.com/npjdigitalmed

Building digital twins of the human immune system: toward a roadmap

R. Laubenbacher 💿 🖾, A. Niarakis 🖻^{2,3}, T. Helikar⁴, G. An 💿⁵, B. Shapiro 💿¹, R. S. Malik-Sheriff 🗐⁶, T. J. Sego⁷, A. Knapp 📵¹, P. Macklin⁷ and J. A. Glazier 🝺

Perspective

Frontiers | Frontiers in Digital Health

https://doi.org/10.1038/s41540-024-00345-5

Forum on immune digital twins: a meeting report

Reinhard Laubenbacher ¹ , Fred Adler ², Gary An³, Filippo Castiglione⁴, Stephen Eubank⁵, Luis L. Fonseca ¹, James Glazier⁶, Tomas Helikar ¹, Marti Jett-Tilton⁸, Denise Kirschner ⁹, Paul Macklin @⁶, Borna Mehrad¹, Beth Moore⁹, Virginia Pasour¹⁰, Ilya Shmulevich¹¹, Amber Smith @¹², Isabel Voigt ¹³, Thomas E. Yankeelov^{14,15} & Tjalf Ziemssen¹³

Check for updates

OPEN ACCESS

Check for updates

The University of Melbourne, Australia REVIEWED BY Heiko Enderlina. University of Texas MD Anderson Cancer Center, United States Russell C. Rockne, Beckman Research Institute, City of Hope, United States *CORRESPONDENCE Reinhard Laubenbacher

Toward mechanistic medical digital twins: some use cases in immunology

Reinhard Laubenbacher^{1*}, Fred Adler², Garv An³, Filippo Castiglione⁴, Stephen Eubank⁵, Luis L. Fonseca¹, James Glazier⁶, Tomas Helikar⁷, Marti Jett-Tilton⁸, Denise Kirschner⁹, Paul Macklin⁶, Borna Mehrad¹, Beth Moore⁹, Virginia Pasour¹⁰, Ilya Shmulevich¹¹, Amber Smith¹², Isabel Voigt¹³, Thomas E. Yankeelov^{14,15,16} and Tjalf Ziemssen¹³

npj | systems biology and applications

Published in partnership with the Systems Biology Institute

https://doi.org/10.1038/s41540-024-00450-5

Immune digital twins for complex human pathologies: applications, limitations, and challenges

Check for updates

Anna Niarakis **1**,², Reinhard Laubenbacher **3**, Gary An⁴, Yaron Ilan **5**, Jasmin Fisher⁶, Åsmund Flobak^{7,8,9}, Kristin Reiche^{10,11,12}, María Rodríguez Martínez¹³, Liesbet Geris ^{(14,15,16}, Luiz Ladeira¹⁶, Lorenzo Veschini^{17,18}, Michael L. Blinov ¹⁹, Francesco Messina²⁰, Luis L. Fonseca ³, Sandra Ferreira²¹, Arnau Montagud^{22,23}, Vincent Noël ^{24,25,26}, Malvina Marku²⁷, Eirini Tsirvouli^{7,28}, Marcella M. Torres²⁹, Leonard A. Harris 10^{30,31,32}, T. J. Sego³, Chase Cockrell 10⁴, Amanda E. Shick³³, Hasan Balci³⁴, Albin Salazar³⁵, Kinza Rian³⁶, Ahmed Abdelmonem Hemedan ³⁷, Marina Esteban-Medina³⁶, Bernard Staumont¹⁶, Esteban Hernandez-Vargas³⁸, Shiny Martis B³⁹, Alejandro Madrid-Valiente²², Panagiotis Karampelesis⁴⁰, Luis Sordo Vieira³, Pradyumna Harlapur ¹, Alexander Kulesza³⁹, Niloofar Nikaein^{42,43}, Winston Garira^{44,45,46}, Rahuman S. Malik Sheriff ^{(14,48}, Juilee Thakar ^{(14,45,46}) Van Du T. Tran ⁵⁰, Jose Carbonell-Caballero²², Soroush Safaei^{51,52}, Alfonso Valencia ^{22,53}, Andrei Zinovyev⁵⁴ & James A. Glazier¹⁸

Perspective

DT projects in the UF Laboratory for Systems Medicine

- A DT for pneumonia patients in the Intensive Care Unit
- A DT for precision nutrition for premature babies
- A DT for detection of early rejection of lung transplants
- A DT for optimal dosing of immunosuppressant drugs for liver transplant patients

Challenges:

- Meld four cultures: mathematical sciences, biology, medicine, industry
- Develop novel sensor technology for noninvasive data collection
- Develop novel computational technology, data science techniques
- Solve ethical, legal, organizational challenges
- Create the basis for a DT industry based on standardization, interoperability
- Develop an international, multi-pronged funding strategy for DT development

https://www.wsj.com/articles/intensive-care-gets-friendlier-with-apps-devices-1426535128